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Abstract  
Exact solutionto the anisotropic Einstein field equations is obtained with a specified form of the 

anisotropicfactor. The field equations are transformed to a simpler form; the integration of the 

system is reduced to solving the condition of pressure anisotropy. It is possible to obtain general 

class of solutions in terms of elementary functions that model the interior of relativistic fluid sphere.  
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Introduction 
 

The theory of general relativity provides a very satisfactory explanation of the behavior 

of the gravitational field. The influence of the gravitational field on the matter distribution 

is expressed by the Einstein field equations which is a nonlinear coupled system of partial 

differential equations and they are difficult to solve in general. Exact solutions of the 

Einstein field equations for an anisotropic matter are important in the description of 

relativistic astrophysical processes. In recent years a number of authors have studied exact 

solutions to the Einstein field equations corresponding to the anisotropic matter where 

the radial component of the pressure differs from the angular component. These 

investigations are contained in the papers (K. Dev and M. Gleiser, 2003), (M. K. Mak 

and T. Harko, 2003), among others.  

 

The field equations are solved by various restrictions placed by investigators on the 

geometry of spacetime and the matter content. Mainly two distinct procedures have been 

adoptedto solve these equations for spherically symmetric static manifolds. Firstly, the 

coupled differential equations are solved by computations after choosing an equation of 

state.  There exist several reviews of the problem associated with an equation of state. 

Secondly, the exact Einstein solutions can be obtained by specifying the geometry and 

the form of the anisotropic factor. In this work we follow the later technique in an attempt 

to find solutions in terms of elementary that are suitable for description of relativistic stars 

as pointed out in (K. Komathiraj and S. D. Maharaj, 2010). This approach was recently 

used by (M. Chaisi and S. D. Maharaj, 2005)that yield a solution in terms of elementary 

functions.  This solution have considered by many authors in the analysis of gravitational 

behavior of compact objects, and the study of anisotropy under strong gravitational fields.  

 

Our main objective is to obtain simple forms for the solutions to the Einstein field 

equations with the anisotropic matter that highlights the role of the spheroidal parameter 

similar to the recent treatment in [3].  In section 2, the Einstein field equations for the 

static spherically symmetric line element with anisotropic matter is expressed and the 

condition of pressure anisotropy is written as  second order differential equations by 

specifying one of the gravitational potential. In section 3, we chose particular formfor the 

anisotropic factor, which enables us to obtain the condition of pressure anisotropy in the 

remaining gravitational potential with the assistance of a transformation.  It is then 

possible to exhibit exact solutions to the Einstein field equations in a series form. In 
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section 4, we demonstrate that the exact solutions to the Einstein field equations in terms 

elementary functions are possible and we generate two linearly independent classes of 

solutions. Finally in section 5, we discuss the physical feature of the solutions.   

 

The anisotropic equations 

We take the line element for static spherically symmetric spacetimes to be 

 

𝑑𝑠2 = −𝑒2𝑓(𝑟)𝑑𝑡2 + 𝑒2𝑔(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin 𝜃𝑑𝜑2)                                     (1) 

 

 

in Schwarzschild coordinates (𝑡, 𝑟, 𝜃, 𝜑 ), where 𝑓(𝑟) and  𝑔(𝑟)are arbitrary functions. 

For a perfect fluid, 

theEinstein field equations can be written in the form 
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In equation (2) - (4), the quantity 𝜇 is the energy density, 𝑝𝑟 is the radial pressure and 𝑝𝑡  

is the tangential pressure.  

 

The Einstein fieldequations (2)-(4)describe the gravitational behaviour foran anisotropic 

imperfect fluid. For matter distributions with 𝑝𝑟 = 𝑝𝑡  (isotropicpressures), the Einstein’s 

equations for isotropic fluid may be regained from (2)-(4).To solve the system, it is 

necessary to specify two of the variables. In our approach we chose e2g and anisotropic 

factor. In the integration procedure we make the choice  

 

 

𝑒2𝑔 =
1 − 𝐾𝑟2

1 − 𝑟2
                                                                 (5) 

 

whereK is spheroidal parameter. On substituting the choice (5) in (4) - (3), we obtain  
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𝑟
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+     (1 − 𝐾)(1 − 𝐾𝑟2)                                            (9) 
 

which is the condition of pressure anisotropy, the quantity ∆is defined as the measure of 

anisotropy or anisotropy factor. The solution of the system (2) – (4) depends on the 

integrability of (9). It is necessary to specify the anisotropic factor to integrate (9).   

 

Master equation 

The differential equation (9)is difficult to solve. However it can be transformed to a 

different type of differential equation which can be solved. It is convenient to introduce 

the following transformation in (9).  
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𝜔(𝑥) =   𝑒𝑓(𝑟) , 𝑥2 = 1 − 𝑟2                                     (10) 

 

Substitution of (10) into(9) leads to the equation 

 

(1 − 𝐾 + 𝐾𝑥2)
𝑑2𝜔

𝑑𝑥2
− 𝐾𝑥

𝑑𝜔

𝑑𝑥
+ (

(1 − 𝐾 + 𝐾𝑥2)2∆

𝑥2 − 1
+ 𝐾(𝐾 − 1)) 𝜔

= 0                                                                  (11) 

which is the second order linear differential equation in the new variables x and 𝜔 . It is 

necessary to specify the anisotropic factor ∆ to solve (11). A variety of choices for ∆ is 

possible but only a few are physically reasonable which generate closed form solutions. 

The differential equation (11) can be reduced to simpler form if we let  

 

∆=
𝑎𝐾(𝑥2 − 1)𝑥

(1 − 𝐾 + 𝐾𝑥2)2
 

 

wherea is a real constant.  Upon substituting this choice into equation (11) we obtain  

 

(1 − 𝐾 + 𝐾𝑥2)
𝑑2𝜔

𝑑𝑥2
    − 𝐾𝑥

𝑑𝜔

𝑑𝑥
+ 𝐾(𝑎 + 𝐾 − 1)𝜔 = 0                      (12) 

 

 

As the point 𝑥 = 0   is a regular point of (12), there exists two linearly independent 

solutions of the form of a power series with centre𝑥 = 0.  Thus, we assume 

 

𝜔 = ∑ 𝑎𝑖𝑥
𝑖

∞

𝐼=0

,      𝑎0 ≠ 0                                                                                   (13) 

where𝑎𝑖 are the coefficients of the series to be determined. For a legitimate solution the 

coefficients 𝑎𝑖 should be determined explicitly. On substituting (13) into (11), we obtain 

𝑎𝑖+2 =  
𝐾[𝑎 + 𝐾 − 1 + 𝑖(𝑖 − 2)]

(𝐾 − 1)(𝑖 + 1)(𝑖 + 2)
𝑎𝑖 , 𝑖 ≥ 2                                                       (14) 

which is the recurrence formula, or difference equation, governing the structure of the 

solution. It is possible to express the general even coefficient 𝑎2𝑖 in terms of the leading 

coefficient 𝑎0 by establishing a general structure for the coefficient by considering the 

leading terms. These coefficients generate the pattern 

𝑎2𝑖 = (
𝐾

𝐾 − 1
)

𝑖 1

2𝑖!
∏[𝑎 + 𝐾 − 1 + 4(𝑝 − 1)(𝑝 − 2)]

𝑖

𝑝=1

𝑎0 

We can obtain a similar formula for the odd coefficients in terms of the leading coefficient 

𝑎1as  

𝑎2𝑖+1 = (
𝐾

𝐾 − 1
)

𝑖 1

(2𝑖 + 1)!
∏[𝑎 + 𝐾 − 1 + (2𝑝 − 1)(2𝑝 − 3)]

𝑖

𝑝=1

𝑎1 

The coefficients are generated from the difference equation (14) and are expressible in 

terms of the leading coefficients. Now it is possible to establish the general solution to 

(12) from (13) and these two patterns as  
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𝜔 = 𝑎0 [1 + ∑ (
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𝑖
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∞
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− 3)] 𝑥2𝑖+1]                                      (15)    

Thus we have found the general series solution to differential equation (12).  Solution 

(15) is expressed in terms of a series with real arguments unlike the complex arguments 

given by software packages.  

 

General solutions with elementary functions 

Solution in terms of polynomials 

It is well known that the general series solution can be written in terms of polynomials 

for particular parameter values. This statement is also true for the series in (15). 

Consequently two sets of solutions in terms of polynomials  can be found by restricting 

the range of values of  𝐾 and 𝑎.  We first consider polynomials of even degree. It is 

convenient to set  

  𝐾 + 𝑎 = 2 − (2𝑛 − 1)2 , 𝑛 > 1and 𝑖 = 2(𝑗 − 1)  in (14). This leads to  

𝑎2𝑗 = (−𝛾)𝑗
(𝑛 + 𝑗 − 2)!

(𝑛 − 𝑗)! (2𝑗)!
𝑥2𝑗 , 0 ≤ 𝑗 ≤ 𝑛 

where we have set 𝛾 = 4 −
4

4𝑛(𝑛−1)+𝛼
and 𝑎0 =

1

𝑛(𝑛−1)
 

With the help of this we can express the polynomial solution to (12) in even powers of x 

in the form  

𝜔1 = ∑(−𝛾)𝑗
(𝑛 + 𝑗 − 2)!

(𝑛 − 𝑗)! (2𝑗)!
𝑥2𝑗

𝑛

𝑗=0

. 

We now consider polynomial of odd degree. For this case we let   

𝐾 + 𝑎 = 2(1 − 2𝑛2)and𝑖 = 2(𝑗 − 1) + 1 in (14). We obtain 

𝑎2𝑗+1 = (−𝜇)𝑗
(𝑛 + 𝑗 − 1)!

(𝑛 − 𝑗)! (2𝑗 + 1)!
𝑥2𝑗 , 0 ≤ 𝑗 ≤ 𝑛 

where we have set 𝜇 = 4 −
4

4𝑛2−1+𝛼
and 𝑎1 =

1

𝑛
 

With the assistance of this pattern we can express the polynomial in odd powers of x as   

𝜔2 = ∑(−𝜇)𝑗
(𝑛 + 𝑗 − 1)!

(𝑛 − 𝑗)! (2𝑗 + 1)!
𝑥2𝑗+1

𝑛

𝑗=0

 

The polynomial solution 𝜔1 and 𝜔2 given above comprise the first solution of (12) for 

appropriate values of the model parameters.  

 

Algebraic functions 

We take the second solution of (12) to be of the form  

  𝜔 = 𝑢(𝑥)(1 − 𝐾 + 𝐾𝑥2)3/2 

whenu(x) is an arbitrary polynomial. Particular solution found in the past are special case 

of this general form; the factor (1 − 𝐾 + 𝐾𝑥2)3/2 helps to simplify the integration 

process. Now it is possible to write two categories of solutions to (12) in terms of 

elementary functions (see [3] for details). The first category of solution is given by  
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𝜔 = 𝐴 ∑(−𝛾)𝑗
(𝑛 + 𝑗 − 2)!

(𝑛 − 𝑗)! (2𝑗)!
𝑥2𝑗

𝑛

𝑗=0

+ 𝐵(1 − 𝐾 + 𝐾𝑥2)3/2 ∑(−𝛾)𝑗
(𝑛 + 𝑗)!

(𝑛 − 𝑗 − 2)! (2𝑗 + 1)!
𝑥2𝑗+1

𝑛−2

𝑗=0

 

For the values 𝛾 = 4 −
4

4𝑛(𝑛−1)+𝛼
 and  𝐾 + 𝑎 = 2 − (2𝑛 − 1)2. 

The second category of solution has the form  

𝜔 = 𝐴 ∑(−𝜇)𝑗
(𝑛 + 𝑗 − 1)!

(𝑛 − 𝑗)! (2𝑗 + 1)!
𝑥2𝑗+1

𝑛

𝑗=0

+ 𝐵(1 − 𝐾 + 𝐾𝑥2)3/2 ∑(−𝜇)𝑗
(𝑛 + 𝑗)!

(𝑛 − 𝑗 − 1)! (2𝑗)!
𝑥2𝑗

𝑛−1

𝑗=0

 

𝜇 = 4 −
4

4𝑛2−1+𝛼
and  𝐾 + 𝑎 = 2(1 − 2𝑛2). 

Therefore two categories of solutions in terms of elementary functions can be extracted 

from the general series in (15). The solutions given above have a simple form and they 

have been expressed completely as combinations of polynomials and algebraic functions. 

This has the advantage of simplifying the investigation into the physical properties of a 

dense anisotropic star.  

 

Discussion 
 

We have found solutions to the Einstein field equations by utilizing the coordinate 

transformation that do have isotropic analogue. A systematic series analysis produced 

recurrence relation with coefficients that could be solved in general. This produced exact 

solutions to the field equations in terms of elementary functions. The anisotropic factor 

may vanish in the general series solution and we can regain isotropic solutions. It is 

possible for series to be expressed in terms of polynomials. We used this feature to find 

two classes of exact solutions to the system in terms of polynomials and product of 

polynomials and algebraic functions. The simple form of the solutions found facilitates 

the analysis of the physical features of an anisotropic fluid sphere.     
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